DATA SHEET Magnetic Fluxgate Current Sensor

PN: CFB600ITN15D400

Feature

Heen

- Closed loop (compensated) current transducer using an extremely accurate zero flux detector
- Electrostatic shield between primary and secondary circuit
- Status signal to indicate the transducer state
- LED indicator confirms normal operation
- For ultra-high precision measurement of current: DC, AC, pulsed..., with galvanic separation between primary and secondary.

Advantages

- Very high accuracy •
- Easy installation •
- Extremely low temperature drift •
- Wide frequency bandwidth •
- High immunity to external fields

Applications

- Metrological verification and calibration
- Instrumentation (like power analyzer)
- Battery pack detection
- Power supply
- New energy
- Commercial measure

- Very good linearity
- No insertion losses
- Low noise on output signal
- Low noise feedback to primary c
- Laboratory current measurement
- Medical devices (MRI)
- Electrical power control
- Ships and warships
- Rail transit

Electrical data: (Ta=25°C, Vc=±15VDC)

Ref		CFB600ITN15D400	
Primary side rated input IPN DC(A)		± 600	
Primary side rated AC input IPN(A)		424	
Primary side max input IPM(A)		110% Ipn dc <ipm<120% dc<="" ipn="" td=""><td></td></ipm<120%>	
Turns ratio Np/NS (T)		1:1500	
Output current rms I _S (mA)		$\pm 400^{*}I_{P}/I_{PN}$	
Secondary coil resistance $R_{S}(\Omega)$		11	
Measuring resistance RM (Ω)		0-10Ω	
Supply voltage V _C (V)		$\pm 15V \pm 5\%$	
Accuracy X _G (%)	@DC,T=25°C	<10ppm	
Offset current I _{OE} (mA)	@I _P =0,T=25°C	< ±15ppm	

Cheemi Technology Co., Ltd

Tel: 025-85996365 E-mail: info@cheemi-tech.com www.cheemi-tech.com Add:3/F,Building6,Jingang Science and Technology Innovation Park,No.<u>1 Kechuang</u> Road, Qixia District, Nanjing City, Jiangsu Province, China. Rev: V1.0

CHEEM

CE

RoHS

 $I_{PN}=600A$

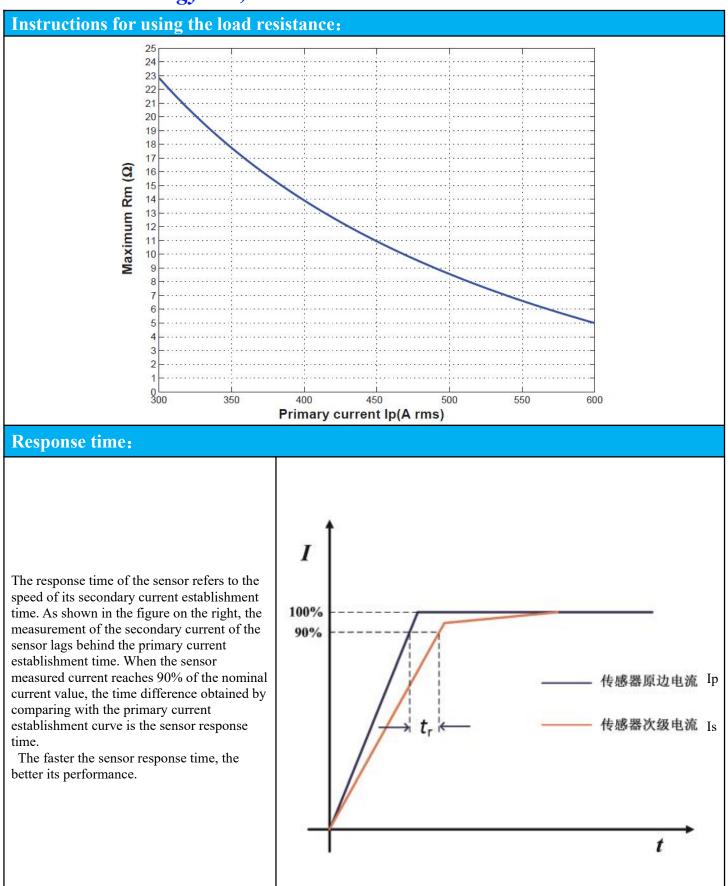
Temperature coefficient of I _{OE}	$@I_P=0,10 \sim +50^{\circ}C$	$<\pm 0.5$ ppm/K	
Offset stability		0.8ppm/month	
Linearity error $\epsilon r(\%FS)$		<1.5ppm	
Di/dt accurately followed $(A/\mu s)$		> 100	
Response time $tra(\mu s)$	@90% of I _{PN}	< 1.0	
Power consumption $I_C(mA)$		200+Is	
Bandwidth BW(KHZ)	@-3dB, 0.5% of IPN	DC-300	
Insulation voltage Vd(KV)	@50/60Hz, 1min, AC	5	

General data:		
Parameter	Value	
Operating temperature $T_A(^{\circ}C)$	$10 \sim +50$	
Storage temperature $T_S(^{\circ}C)$	-20~ +85	
Mass M(g)		
Plastic material	PBT G30/G15, UL94- V0;	
Standards	EN 61000-6-2: 2005	
	EN 61000-6-3: 2007	
	EN 61010-1: 2010.	

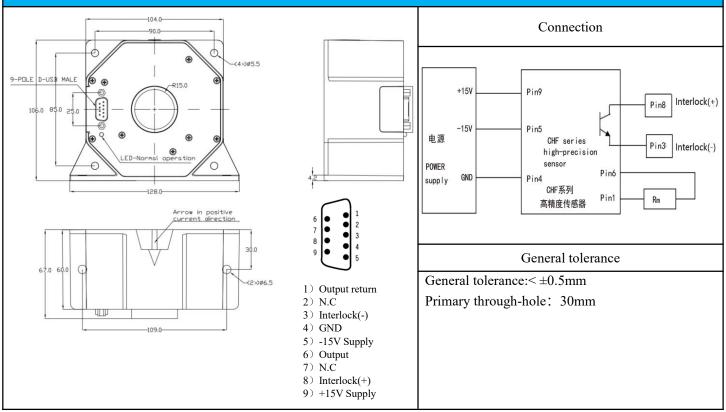
Working status description:

• After the equipment is powered on, the green indicator light is always on when the equipment works normally

• When the current is overloaded or the power supply is abnormal, the green light is off:


When the green light is not on, you should first check whether the power supply of the sensor is normal.When the power supply is normal, if the green indicator is off, the current sensor is in a non-zero flux state. If the primary current at this time exceeds the specified range of the sensor, the sensor enters the overload operation mode.When this happens, the transducer will shut down the measuring circuit and wait until the primary current is near zero.

Interlock port wiring:


Cheemi Technology Co., Ltd Tel: 025-85996365 E-mail: info@cheemi-tech.com www. cheemi-tech.com Add:3/F,Building6,Jingang Science and Technology Innovation Park,No.1 Kechuang Road, Qixia District, Nanjing City,Jiangsu Province, China. Rev: V1.0

Cheemi Technology Co., Ltd Tel: 025-85996365 E-mail: info@cheemi-tech.com www. cheemi-tech.com Add:3/F,Building6,Jingang Science and Technology Innovation Park,No. I Kechuang Road, Qixia District, Nanjing City,Jiangsu Province, China.

Dimensions(mm):

Remarks:

- ➢ Is is positive when IP flows in the direction of the arrow.
- > Temperature of the primary conductor should not exceed 50° C.
- The primary side current shall be powered after the sensor indicator is on; when power is off, remove the primary side first Current, and then disconnect the current sensor for power supply. Otherwise, the accuracy of the sensor may decrease or the sensor may be damaged.

WARNING : Incorrect wiring may cause damage to the sensor.

Cheemi Technology Co., Ltd Tel: 025-85996365 E-mail: info@cheemi-tech.com www. cheemi-tech.com Add:3/F,Building6,Jingang Science and Technology Innovation Park,No.1 Kechwang Road, Qixia District, Nanjing City,Jiangsu Province, China.